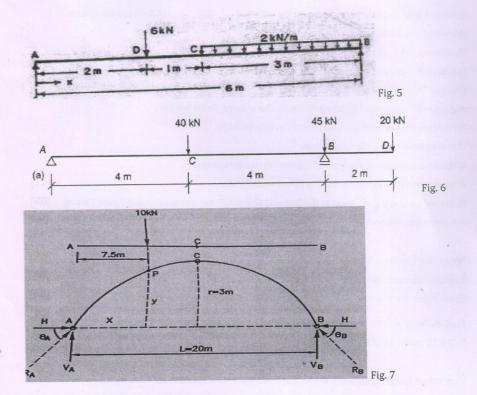
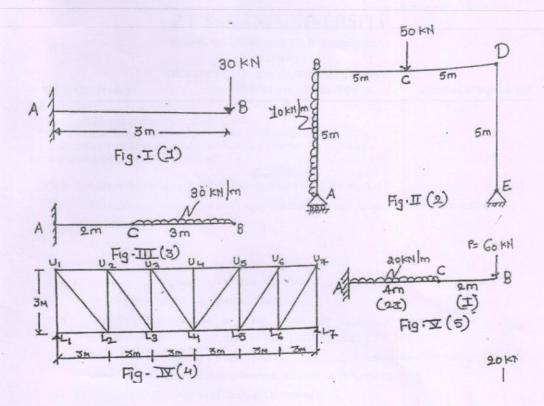
P P SAVANI UNIVERSITY

Fourth Semester of B. Tech. Examination May 2022


SECV2051 Determinate structural analysis


20.05.2022, Friday

Time: 09:00 a.m. To 11:30 a.m. Maximum Marks: 60

ns	tructio	ons:	
	The qu	nestion paper comprises of two sections.	
	Make	n I and II must be attempted in separate answer sheets. suitable assumptions and draw neat figures wherever required.	
	Use of	scientific calculator is allowed.	
		SECTION - I	
	Q-1	Answer the Following: (MCQ/Short Question/Fill in the Blanks)	[05]
	(i)	The minimum number of over all equilibrium equations for plane truss analysis must be	
		equal to	
		a) Unlimited number c) 03	
		b) 06 d) 02	
	(ii)	Influence line diagram helps to study the effect ofload on the structures.	
		(Moving load, Static Load, Vibrating Load)	
	(iii)	Significant deformations in plane frame are and A	
		(positive & Negative, Axial & flexural, Torsional & Flexural)	
	(iv)	Point of Contra flexure is the point whenchange its sign from Positive to	
		negative or vice versa. (Bending Moment, shear force, Deformation)	
	(v)	Write definition of degree of kinematic indeterminacy.	
-	(vi)	Write equation for S.I & K.I of Beam.	
(vii)	Write two methods of analysis of Indeterminate structures.	
Q-	2 (a)	Explain conjugate Beam Method in Detail with figure.	[05]
Q-	2 (b)	Determine slope & Deflection at the free end of a cantilever beam shown in figure 1 using	[05]
		moment area method. Ixx= $6 \times 10^7 \text{ mm}^4 \text{ E} = 2 \times 10^5 \text{ N/mm}^2$	
		OR	
	2 (a)	Write short note on Moment Area Method.	[05]
Q-	2 (b)	Explain difference between Truss & Frame.	[05]
Q-	3 (a)	Draw Shear force & Bending Moment diagram for a frame shown in figure 2.	[05]
Q -	3 (b)	Find $\theta_B \theta c y_B yc$ for a beam shown in figure 3 using conjugate beam method.	[05]
		$I=3 \times 10^8 \text{ mm}^4 E=2 \times 10^5 \text{ N/mm}^2$	
		OR	
5 -	3 (a)	Two wheel loads 12 kN and 20 kN with fixed distance 2m between them an 12 kN load	[05]
		leading, crosses a beam of span 8 m from left to right. Draw influence line diagram for	
		shear force and bending moment for a point 3m from left support and find maximum	
		values of shear force and bending moment.	

Q-3(b)	Draw influence line diagram for the force in in the top chord & bottom chord of a Pratt	[05]
	truss having 6 panels each 3m square as shown in figure 4.	
Q-4	Attempt any one/two.	[05
(i)	Write short note on influence line diagram & its importance.	
(ii)	Draw influence lines for reaction in simply supported beam AB of Span L.	
	Section II	
Q-1	Determine the deflection at C slope at A and maximum deflection. E = $2*10^5 \text{N/mm}^2 \text{I}$ =	10
	2000 cm ⁴ . Figure 5 use Macaulay's method.	
Q-2	Find deflection under the load and slope at A. for example shown in Figure 6.	10
Q-3	Calculate maximum positive and negative bending moments and their positions.	10
	Figure 7.	1

